मराठी

The Set of All Values of M for Which Both the Roots of the Equation X 2 − ( M + 1 ) X + M + 4 = 0 Are Real and Negative, is - Mathematics

Advertisements
Advertisements

प्रश्न

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is

पर्याय

  • \[( - \infty , - 3] \cup [5, \infty )\]

  • [−3, 5]

  • (−4, −3]

  •  (−3, −1]

MCQ

उत्तर

\[m \in ( - 4, - 3]\] The roots of the quadratic equation \[x^2 - (m + 1)x + m + 4 = 0\] will be real, if its discriminant is greater than or equal to zero.

\[\therefore \left( m + 1 \right)^2 - 4\left( m + 4 \right) \geq 0\]

\[ \Rightarrow \left( m - 5 \right)\left( m + 3 \right) \geq 0\]

\[ \Rightarrow m \leq - 3 \text { or } m \geq 5 . . . (1)\]

It is also given that, the roots of \[x^2 - (m + 1)x + m + 4 = 0\] are negative.
So, the sum of the roots will be negative.
\[\therefore\] Sum of the roots < 0

\[\Rightarrow m + 1 < 0\]

\[ \Rightarrow m < - 1 . . . (2)\]

and product of zeros >0

\[\Rightarrow m + 4 > 0\]

\[ \Rightarrow m > - 4 . . . (3)\]

From (1), (2) and (3), we get,

\[m \in ( - 4, - 3]\]

Disclaimer: The solution given in the book is incorrect. The solution here is created according to the question given in the book.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 18 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation 2x2 + x + 1 = 0


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation   `x^2 -2x + 3/2 = 0`  


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


\[x^2 + 2x + 5 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×