Advertisements
Advertisements
प्रश्न
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
पर्याय
p = 1, q = −2
p = −1, q = −2
p = −1, q = 2
p = 1, q = 2
उत्तर
p = 1, q = −2
It is given that, p and q (p ≠ 0, q ≠ 0) are the roots of the equation \[x^2 + px + q = 0\].
\[\therefore \text { Sum of roots } = p + q = - p\]
\[ \Rightarrow 2p + q = 0 . . . (1)\]
\[\text { Product of roots } = pq = q\]
\[ \Rightarrow q\left( p - 1 \right) = 0\]
\[ \Rightarrow p = 1, q = 0 \text { but } q \neq 0\]
Now, substituting p = 1 in (1), we get,
\[2 + q = 0\]
\[ \Rightarrow q = - 2\]
Disclaimer: The solution given in the book is incorrect. The solution here is created according to the question given in the book.
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 9 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
\[4 x^2 + 1 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[- x^2 + x - 2 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.