मराठी

Solve the Following Quadratic Equation: X 2 − ( 2 + I ) X − ( 1 − 7 I ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]

उत्तर

\[ x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]

\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]

\[a = 1, b = - \left( 2 + i \right) \text { and } c = - \left( 1 - 7i \right)\]

\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]

\[ \Rightarrow x = \frac{\left( 2 + i \right) \pm \sqrt{\left( 2 + i \right)^2 + 4\left( 1 - 7i \right)}}{2}\]

\[ \Rightarrow x = \frac{\left( 2 + i \right) \pm \sqrt{7 - 24i}}{2} . . . \left( i \right)\]

\[\text { Let  }x + iy = \sqrt{7 - 24i} . \text { Then }, \]

\[ \Rightarrow \left( x + iy \right)^2 = 7 - 24i\]

\[ \Rightarrow x^2 - y^2 + 2ixy = 7 - 24i \]

\[ \Rightarrow x^2 - y^2 = 7 \text { and } 2xy = - 24 . . . \left( ii \right)\]

\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]

\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 49 + 576 = 625\]

\[ \Rightarrow x^2 + y^2 = 25 . . . \left( iii \right) \]

\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]

\[ \Rightarrow x = \pm 4 \text { and } y = \pm 3\]

\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]

\[ \Rightarrow x = - 4, y = 3 or, x = 4, y = - 3\]

\[ \Rightarrow x + iy = - 4 + 3i or, 4 - 3i\]

\[ \Rightarrow \sqrt{7 - 24i} = \pm 4 - 3i\]

\[\text { Substituting these values in } \left( i \right), \text { we get }\]

\[ \Rightarrow x = \frac{\left( 2 + i \right) \pm \left( 4 - 3i \right)}{2}\]

\[ \Rightarrow x = 3 - i, - 1 + 2i\]

\[\text { So, the roots of the given quadratic equation are 3 - i and } - 1 + 2i . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.2 | Q 2.04 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3x + 9 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


9x2 + 4 = 0


\[x^2 + 2x + 5 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×