Advertisements
Advertisements
प्रश्न
\[21 x^2 + 9x + 1 = 0\]
उत्तर
Given:
\[21 x^2 + 9x + 1 = 0\]
Comparing the given equation with the general form of the quadratic equation
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation 27x2 – 10x + 1 = 0
9x2 + 4 = 0
x2 + 2x + 5 = 0
4x2 − 12x + 25 = 0
x2 + x + 1 = 0
\[x^2 + 2x + 5 = 0\]
\[x^2 + x + 1 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.