मराठी

21 X 2 + 9 X + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[21 x^2 + 9x + 1 = 0\]

उत्तर

Given:  

\[21 x^2 + 9x + 1 = 0\]

Comparing the given equation with  the general form of the quadratic equation

\[a x^2 + bx + c = 0\] we get 
\[a = 21, b = 9\] and \[c = 1\] .
Substituting these values in \[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\]  and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\] , we get:
\[\alpha = \frac{- 9 + \sqrt{81 - 4 \times 21 \times 1}}{2 \times 21}\]  and   \[\beta = \frac{- 9 - \sqrt{81 - 4 \times 21 \times 1}}{2 \times 21}\]
\[\Rightarrow \alpha = \frac{- 9 + \sqrt{3}i}{42}\] and \[\beta = \frac{- 9 - \sqrt{3}i}{42}\]
\[\Rightarrow \alpha = - \frac{9}{42} + \frac{\sqrt{3}i}{42}\]  and     \[\beta = - \frac{9}{42} - \frac{\sqrt{3}i}{42}\]
\[\Rightarrow \alpha = - \frac{3}{14} + \frac{\sqrt{3}i}{42}\] and \[\beta = - \frac{3}{14} - \frac{\sqrt{3}i}{42}\] 
Hence, the roots of the equation are \[- \frac{3}{14} \pm \frac{i\sqrt{3}}{42} .\]     
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 10 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 27x2 – 10x + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


x2 + x + 1 = 0


\[x^2 + 2x + 5 = 0\]


\[x^2 + x + 1 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×