मराठी

If X is Real and K = X 2 − X + 1 X 2 + X + 1 , Then - Mathematics

Advertisements
Advertisements

प्रश्न

If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then

पर्याय

  • k ∈ [1/3,3]

  •  k ≥ 3

  •  k ≤ 1/3

  •  none of these

MCQ

उत्तर

k ∈ [1/3,3]

\[k = \frac{x^2 - x + 1}{x^2 + x + 1}\]

\[ \Rightarrow k x^2 + kx + k = x^2 - x + 1\]

\[ \Rightarrow \left( k - 1 \right) x^2 + \left( k + 1 \right)x + k - 1 = 0\]

For real values of x, the discriminant of

\[\left( k - 1 \right) x^2 + \left( k + 1 \right)x + k - 1 = 0\] should be greater than or equal to zero.

\[\therefore if k \neq 1\]

\[ \left( k + 1 \right)^2 - 4\left( k - 1 \right)\left( k - 1 \right) \geq 0 \]

\[ \Rightarrow \left( k + 1 \right)^2 - \left\{ 2\left( k - 1 \right) \right\}^2 \geq 0\]

\[ \Rightarrow \left( k + 1 + 2k - 2 \right)\left( k + 1 - 2k + 2 \right) \geq 0\]

\[ \Rightarrow \left( 3k - 1 \right)\left( - k + 3 \right) \geq 0\]

\[ \Rightarrow \left( 3k - 1 \right)\left( k - 3 \right) \leq 0\]

\[ \Rightarrow \frac{1}{3} \leq k \leq 3 i . e . k \in \left[ \frac{1}{3}, 3 \right] - \left\{ 1 \right\} . . . (i)\]

And if k=1, then,
x=0, which is real       ...(ii)
So, from (i) and (ii), we get,

\[k \in \left[ \frac{1}{3}, 3 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 11 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation 21x2 – 28x + 10 = 0


\[5 x^2 - 6x + 2 = 0\]


\[x^2 + x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×