मराठी

If α, β Are the Roots of the Equation a X 2 + B X + C = 0 , Then 1 a α + B + 1 a β + B = - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]

पर्याय

  • c / ab

  • a / bc

  • b / ac

  • none of these.

MCQ

उत्तर

b / ac
Given equation: 

\[a x^2 + bx + c = 0\]

Also, 

\[\alpha\] and  \[\beta\] are the roots of the given equation.

Then, sum of the roots = \[\alpha + \beta = - \frac{b}{a}\]

Product of the roots = \[\alpha\beta = \frac{c}{a}\]

\[\therefore \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} = \frac{a\beta + b + a\alpha + b}{(a\alpha + b) (a\beta + b)} \]

\[ = \frac{a(\alpha + \beta) + 2b}{a^2 \alpha\beta + ab\alpha + ab\beta + b^2} \]

\[ = \frac{a(\alpha + \beta) + 2b}{a^2 \alpha\beta + ab\left( \alpha + \beta \right) + b^2}\]

\[ = \frac{a\left( - \frac{b}{a} \right) + 2b}{a^2 \left( \frac{c}{a} \right) + ab\left( - \frac{b}{a} \right) + b^2} \]

\[ = \frac{b}{ac}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 7 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


x2 + x + 1 = 0


\[5 x^2 - 6x + 2 = 0\]


\[x^2 - x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[- x^2 + x - 2 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×