मराठी

The Equation of the Smallest Degree with Real Coefficients Having 1 + I as One of the Roots is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the smallest degree with real coefficients having 1 + i as one of the roots is

पर्याय

  • \[x^2 + x + 1 = 0\]

  • \[x^2 - 2x + 2 = 0\]

  • \[x^2 + 2x + 2 = 0\]

  • \[x^2 + 2x - 2 = 0\]

MCQ

उत्तर

\[x^2 - 2x + 2 = 0\]

We know that, imaginary roots of a quadratic equation occur in conjugate pair.
It is given that, 1 + i is one of the roots.
So, the other root will be  \[1 - i\] .

Thus, the quadratic equation having roots 1 + i and 1 - i is,

\[x^2 - \left( 1 + i + 1 - i \right)x + \left( 1 + i \right)\left( 1 - i \right) = 0\]

\[ \Rightarrow x^2 - 2x + 2 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 25 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 – x + 2 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 21x2 – 28x + 10 = 0


4x2 − 12x + 25 = 0


\[x^2 - 4x + 7 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×