Advertisements
Advertisements
प्रश्न
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
उत्तर
Given equation:
\[x^2 + lx + m = 0\]
Also,
\[\alpha \text { and } \beta\] are the roots of the equation.
Sum of the roots = \[\alpha + \beta = \frac{- l}{1} = - l\]
Product of the roots = \[\alpha\beta = \frac{m}{1} = m\]
Now, sum of the roots = \[- \frac{1}{\alpha} - \frac{1}{\beta} = - \frac{\alpha + \beta}{\alpha\beta} = - \frac{- l}{m} = \frac{l}{m}\]
Product of the roots = \[\frac{1}{\alpha\beta} = \frac{1}{m}\]
\[\therefore x^2 - \left( \text { Sum of the roots } \right)x +\text { Product of the roots } = 0\]
\[ \Rightarrow x^2 - \frac{l}{m}x + \frac{1}{m} = 0\]
\[ \Rightarrow m x^2 - lx + 1 = 0\]
Hence, this is the equation whose roots are \[- \frac{1}{\alpha} \text { and } - \frac{1}{\beta} .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation 2x2 + x + 1 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 -2x + 3/2 = 0`
Solve the equation 27x2 – 10x + 1 = 0
Solve the equation 21x2 – 28x + 10 = 0
4x2 − 12x + 25 = 0
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.