मराठी

If α, β Are Roots of the Equation X 2 + L X + M = 0 , Write an Equation Whose Roots Are − 1 α and − 1 β . - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].

उत्तर

Given equation:

\[x^2 + lx + m = 0\]

Also, 

\[\alpha \text { and } \beta\] are the roots of the equation.
Sum of the roots = \[\alpha + \beta = \frac{- l}{1} = - l\]

Product of the roots = \[\alpha\beta = \frac{m}{1} = m\]

Now, sum of the roots = \[- \frac{1}{\alpha} - \frac{1}{\beta} = - \frac{\alpha + \beta}{\alpha\beta} = - \frac{- l}{m} = \frac{l}{m}\]

Product of the roots = \[\frac{1}{\alpha\beta} = \frac{1}{m}\]

\[\therefore x^2 - \left( \text { Sum of the roots } \right)x +\text {  Product of the roots } = 0\]

\[ \Rightarrow x^2 - \frac{l}{m}x + \frac{1}{m} = 0\]

\[ \Rightarrow m x^2 - lx + 1 = 0\]

Hence, this is the equation whose roots are  \[- \frac{1}{\alpha} \text { and } - \frac{1}{\beta} .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.3 | Q 9 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation 2x2 + x + 1 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


4x2 − 12x + 25 = 0


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[- x^2 + x - 2 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×