हिंदी

If α, β Are Roots of the Equation X 2 + L X + M = 0 , Write an Equation Whose Roots Are − 1 α and − 1 β . - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].

उत्तर

Given equation:

\[x^2 + lx + m = 0\]

Also, 

\[\alpha \text { and } \beta\] are the roots of the equation.
Sum of the roots = \[\alpha + \beta = \frac{- l}{1} = - l\]

Product of the roots = \[\alpha\beta = \frac{m}{1} = m\]

Now, sum of the roots = \[- \frac{1}{\alpha} - \frac{1}{\beta} = - \frac{\alpha + \beta}{\alpha\beta} = - \frac{- l}{m} = \frac{l}{m}\]

Product of the roots = \[\frac{1}{\alpha\beta} = \frac{1}{m}\]

\[\therefore x^2 - \left( \text { Sum of the roots } \right)x +\text {  Product of the roots } = 0\]

\[ \Rightarrow x^2 - \frac{l}{m}x + \frac{1}{m} = 0\]

\[ \Rightarrow m x^2 - lx + 1 = 0\]

Hence, this is the equation whose roots are  \[- \frac{1}{\alpha} \text { and } - \frac{1}{\beta} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.3 | Q 9 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation 27x2 – 10x + 1 = 0


x2 + 1 = 0


9x2 + 4 = 0


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[x^2 - 4x + 7 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×