Advertisements
Advertisements
प्रश्न
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
उत्तर
Given equation:
\[x^2 + lx + m = 0\]
Also,
\[\alpha \text { and } \beta\] are the roots of the equation.
Sum of the roots = \[\alpha + \beta = \frac{- l}{1} = - l\]
Product of the roots = \[\alpha\beta = \frac{m}{1} = m\]
Now, sum of the roots = \[- \frac{1}{\alpha} - \frac{1}{\beta} = - \frac{\alpha + \beta}{\alpha\beta} = - \frac{- l}{m} = \frac{l}{m}\]
Product of the roots = \[\frac{1}{\alpha\beta} = \frac{1}{m}\]
\[\therefore x^2 - \left( \text { Sum of the roots } \right)x +\text { Product of the roots } = 0\]
\[ \Rightarrow x^2 - \frac{l}{m}x + \frac{1}{m} = 0\]
\[ \Rightarrow m x^2 - lx + 1 = 0\]
Hence, this is the equation whose roots are \[- \frac{1}{\alpha} \text { and } - \frac{1}{\beta} .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation 27x2 – 10x + 1 = 0
x2 + 1 = 0
9x2 + 4 = 0
4x2 − 12x + 25 = 0
\[4 x^2 + 1 = 0\]
\[x^2 - 4x + 7 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.