हिंदी

Solve the Following Quadratic Equation: X 2 − ( 3 √ 2 + 2 I ) X + 6 √ 2 I = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]

उत्तर

\[ x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2}i = 0\]

\[ \Rightarrow x^2 - 3\sqrt{2} x - 2i x + 6\sqrt{2}i = 0\]

\[ \Rightarrow x\left( x - 3\sqrt{2} \right) - 2i\left( x - 3\sqrt{2} \right) = 0\]

\[ \Rightarrow \left( x - 3\sqrt{2} \right)\left( x - 2i \right) = 0\]

\[ \Rightarrow \left( x - 3\sqrt{2} \right) = 0 \text { or } \left( x - 2i \right) = 0\]

\[ \Rightarrow x = 3\sqrt{2}, 2i\]

\[\text { So, the roots of the given quadratic equation are 3 }\sqrt{2} \text { and } 2i . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.2 | Q 2.01 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation 2x2 + x + 1 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


\[x^2 + 2x + 5 = 0\]


\[x^2 + x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[13 x^2 + 7x + 1 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×