हिंदी

X2 + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

x2 + 1 = 0

उत्तर

Given: 

\[x^2 + 1 = 0\]

\[x^2 + 1 = 0\]

\[ \Rightarrow x^2 - 1 i^2 = 0\]

\[ \Rightarrow (x + i) (x - i) = 0 [ ( a^2 - b^2 ) = (a + b) (a - b)]\]

\[\Rightarrow (x + i) = 0\] or \[(x - i) = 0\]

\[\Rightarrow x = - i\]  or  \[x = i\]

Hence, the roots of the equation are  \[i \text { and }- i\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 1 | पृष्ठ ५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[4 x^2 + 1 = 0\]


\[x^2 - 4x + 7 = 0\]


\[x^2 + x + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×