मराठी

X2 + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

x2 + 1 = 0

उत्तर

Given: 

\[x^2 + 1 = 0\]

\[x^2 + 1 = 0\]

\[ \Rightarrow x^2 - 1 i^2 = 0\]

\[ \Rightarrow (x + i) (x - i) = 0 [ ( a^2 - b^2 ) = (a + b) (a - b)]\]

\[\Rightarrow (x + i) = 0\] or \[(x - i) = 0\]

\[\Rightarrow x = - i\]  or  \[x = i\]

Hence, the roots of the equation are  \[i \text { and }- i\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 1 | पृष्ठ ५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×