मराठी

Solve the Equation Quadratic Equation Sqrt2x^2 + X + Sqrt2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`

बेरीज

उत्तर

The given quadratic equation is `sqrt2x^2 + x + sqrt2 = 0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise 5.3 [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise 5.3 | Q 7 | पृष्ठ १०९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 27x2 – 10x + 1 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[x^2 - x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×