मराठी

X 2 + X √ 2 + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]

उत्तर

Given equation: 

\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]

Comparing the given equation with  the general form of the quadratic equation

\[a x^2 + bx + c = 0\] ,we get 
\[a = 1, b = \frac{1}{\sqrt{2}}\] and \[c = 1\].
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\],
we get:
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + \sqrt{\frac{1}{2} - 4 \times 1 \times 1}}{2}\]  and \[\beta   =   \frac{- \frac{1}{\sqrt{2}}  - \sqrt{\frac{1}{2}  - 4 \times 1 \times 1}}{2}\]
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + \sqrt{- \frac{7}{2}}}{2}\]  and \[\beta = \frac{- \frac{1}{\sqrt{2}} - \sqrt{- \frac{7}{2}}}{2}\] 
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + i\sqrt{\frac{7}{2}}}{2}\] and  \[\beta = \frac{- \frac{1}{\sqrt{2}} - i\sqrt{\frac{7}{2}}}{2}\]
\[\alpha = \frac{- 1 + i\sqrt{7}}{2\sqrt{2}}\]  and   \[\beta = \frac{- 1 - i\sqrt{7}}{2\sqrt{2}}\]
Hence, the roots of the equation are 
\[\frac{- 1 \pm i\sqrt{7}}{2\sqrt{2}}\] .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.1 | Q 23 | पृष्ठ ६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 21x2 – 28x + 10 = 0


x2 + 2x + 5 = 0


\[4 x^2 + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×