हिंदी

X 2 + X √ 2 + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]

उत्तर

Given equation: 

\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]

Comparing the given equation with  the general form of the quadratic equation

\[a x^2 + bx + c = 0\] ,we get 
\[a = 1, b = \frac{1}{\sqrt{2}}\] and \[c = 1\].
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\],
we get:
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + \sqrt{\frac{1}{2} - 4 \times 1 \times 1}}{2}\]  and \[\beta   =   \frac{- \frac{1}{\sqrt{2}}  - \sqrt{\frac{1}{2}  - 4 \times 1 \times 1}}{2}\]
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + \sqrt{- \frac{7}{2}}}{2}\]  and \[\beta = \frac{- \frac{1}{\sqrt{2}} - \sqrt{- \frac{7}{2}}}{2}\] 
\[\alpha = \frac{- \frac{1}{\sqrt{2}} + i\sqrt{\frac{7}{2}}}{2}\] and  \[\beta = \frac{- \frac{1}{\sqrt{2}} - i\sqrt{\frac{7}{2}}}{2}\]
\[\alpha = \frac{- 1 + i\sqrt{7}}{2\sqrt{2}}\]  and   \[\beta = \frac{- 1 - i\sqrt{7}}{2\sqrt{2}}\]
Hence, the roots of the equation are 
\[\frac{- 1 \pm i\sqrt{7}}{2\sqrt{2}}\] .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 23 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


x2 + x + 1 = 0


\[21 x^2 + 9x + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[17 x^2 + 28x + 12 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×