हिंदी

If the Difference Between the Roots of the Equation X 2 + a X + 8 = 0 is 2, Write the Values of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.

उत्तर

Given: 

\[x^2 + ax + 8 = 0 .\]

Let \[\alpha \text { and } \beta\] are the roots of the equation.
 Sum of the roots = \[\alpha + \beta = \frac{- a}{1} = - a\].

  Product of the roots = \[\alpha\beta = \frac{8}{1} = 8\]

Given:

\[\alpha - \beta = 2\]

\[\text { Then }, \left( \alpha + \beta \right)^2 - \left( \alpha - \beta \right)^2 = 4\alpha\beta\]

\[ \Rightarrow \left( \alpha + \beta \right)^2 - 2^2 = 4 \times 8\]

\[ \Rightarrow \left( \alpha + \beta \right)^2 - 4 = 32\]

\[ \Rightarrow \left( \alpha + \beta \right)^2 = 32 + 4 = 36\]

\[ \Rightarrow \left( \alpha + \beta \right) = \pm 6\]

\[\alpha + \beta = - a = \pm 6\]

\[a = \pm 6\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.3 | Q 5 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[x^2 + 2x + 5 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[2 x^2 + x + 1 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×