Advertisements
Advertisements
प्रश्न
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
उत्तर
Given:
\[x^2 + ax + 8 = 0 .\]
Let \[\alpha \text { and } \beta\] are the roots of the equation.
Sum of the roots = \[\alpha + \beta = \frac{- a}{1} = - a\].
Product of the roots = \[\alpha\beta = \frac{8}{1} = 8\]
Given:
\[\alpha - \beta = 2\]
\[\text { Then }, \left( \alpha + \beta \right)^2 - \left( \alpha - \beta \right)^2 = 4\alpha\beta\]
\[ \Rightarrow \left( \alpha + \beta \right)^2 - 2^2 = 4 \times 8\]
\[ \Rightarrow \left( \alpha + \beta \right)^2 - 4 = 32\]
\[ \Rightarrow \left( \alpha + \beta \right)^2 = 32 + 4 = 36\]
\[ \Rightarrow \left( \alpha + \beta \right) = \pm 6\]
\[\alpha + \beta = - a = \pm 6\]
\[a = \pm 6\]
APPEARS IN
संबंधित प्रश्न
\[x^2 + 2x + 5 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[x^2 - x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[2 x^2 + x + 1 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.