Advertisements
Advertisements
प्रश्न
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
विकल्प
2, −4
1, −3
−1, 3
−1, −3
उत्तर
−1, −3 The given equation is \[\log_3 ( x^2 + 4x + 12) = 2\] .
\[\Rightarrow x^2 + 4x + 12 = 3^2 = 9\]
\[ \Rightarrow x^2 + 4x + 3 = 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x + 3 \right) = 0\]
\[ \Rightarrow x = - 1, - 3\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
Solve the equation 21x2 – 28x + 10 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
9x2 + 4 = 0
x2 + 2x + 5 = 0
4x2 − 12x + 25 = 0
\[x^2 + 2x + 5 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is