Advertisements
Advertisements
प्रश्न
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
उत्तर
\[ x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
\[ \Rightarrow x^2 - 2\sqrt{3}x - 3i x + 6\sqrt{3}i = 0\]
\[ \Rightarrow x\left( x - 2\sqrt{3} \right) - 3i\left( x - 2\sqrt{3} \right) = 0\]
\[ \Rightarrow \left( x - 2\sqrt{3} \right)\left( x - 3i \right) = 0\]
\[ \Rightarrow \left( x - 2\sqrt{3} \right) = 0\text { or } \left( x - 3i \right) = 0\]
\[ \Rightarrow x = 2\sqrt{3}, 3i\]
\[\text { So, the roots of the given quadratic equation are } 2\sqrt{3} \text { and } 3i . \]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation 2x2 + x + 1 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
9x2 + 4 = 0
\[4 x^2 + 1 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[x^2 - x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.