Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
उत्तर
\[ x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2}i = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0,\text { we get }\]
\[a = 1, b = - \left( 3\sqrt{2} - 2i \right) \text { and } c = - \sqrt{2}i\]
\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]
⇒ x = `(-(-3sqrt2-2i)±sqrt((-(3sqrt2-2i))^2)-4(1)(-sqrt2i))/2(1)`
\[ \Rightarrow x = \frac{\left (- 3\sqrt{2} - 2i) \right) \pm \sqrt{\left( 3\sqrt{2} - 2i \right)^2 - 4\sqrt{2}i}}{2}\]
\[ \Rightarrow x = \frac{\left( 3\sqrt{2} - 2i \right) \pm \sqrt{14 - 8\sqrt{2}i}}{2} . . . \left( i \right)\]
\[\text { Let } x + iy = \sqrt{14 - 8\sqrt{2}i} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = 14 - 8\sqrt{2}i\]
\[ \Rightarrow x^2 - y^2 + 2ixy = 14 - 8\sqrt{2}i \]
\[ \Rightarrow x^2 - y^2 = 14 \text { and } 2xy = - 8\sqrt{2} . . . \left( ii \right)\]
\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 196 + 128 = 324\]
\[ \Rightarrow x^2 + y^2 = 18 . . . \left( iii \right) \]
\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]
\[ \Rightarrow x = \pm 4 \text{ and }y = \pm \sqrt{2}\]
\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow x = - 4, y = \sqrt{2}\text{ or }, x = 4, y = - \sqrt{2}\]
\[ \Rightarrow x + iy = 4 - \sqrt{2} i \text { or, } - 4 + \sqrt{2} i\]
\[ \Rightarrow \sqrt{14 - 8\sqrt{2}i} = \pm \left( 4 - \sqrt{2} i \right)\]
\[\text { Substituting these values in } \left( i \right), \text { we get }\]
\[ \Rightarrow x = \frac{\left( 3\sqrt{2} - 2i \right) \pm \left( 4 - \sqrt{2} i \right)}{2}\]
\[ \Rightarrow x = \frac{\left( 3\sqrt{2} + 4 \right) - i\left( 2 + \sqrt{2} \right)}{2}, \frac{\left( 3\sqrt{2} - 4 \right) - i\left( 2 - \sqrt{2} \right)}{2}\]
\[\text { So, the roots of the given quadratic equation are } \frac{\left( 3\sqrt{2} + 4 \right) - i\left( 2 + \sqrt{2} \right)}{2} \text{ and } \frac{\left( 3\sqrt{2} - 4 \right) - i\left( 2 - \sqrt{2} \right)}{2} .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation 2x2 + x + 1 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
4x2 − 12x + 25 = 0
x2 + x + 1 = 0
\[17 x^2 - 8x + 1 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.