Advertisements
Advertisements
प्रश्न
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
उत्तर
\[ 6 x^2 - 17ix - 12 = 0\]
\[ \Rightarrow 6 x^2 - 9ix - 8ix - 12 = 0\]
\[ \Rightarrow 3x\left( 2x - 3i \right) - 4i\left( 2x - 3i \right) = 0\]
\[ \Rightarrow \left( 2x - 3i \right)\left( 3x - 4i \right) = 0\]
\[ \Rightarrow \left( 2x - 3i \right) = 0 or \left( 3x - 4i \right) = 0\]
\[ \Rightarrow x = \frac{3}{2}i, \frac{4}{3}i\]
\[\text { So, the roots of the given quadratic equation are } \frac{3}{2}i \text { and } \frac{4}{3}i . \]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 5 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
x2 + 1 = 0
4x2 − 12x + 25 = 0
x2 + x + 1 = 0
\[x^2 + 2x + 5 = 0\]
\[x^2 + x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.