Advertisements
Advertisements
प्रश्न
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
विकल्प
0
2
3
4
उत्तर
2
Explanation:
Given equation:
\[|2x - x^2 - 3| = 1\]
\[ 2x - x^2 - 3 = 1\]
\[ \Rightarrow 2x - x^2 - 4 = 0\]
\[ \Rightarrow x^2 - 2x + 4 = 0\]
Discriminant D = 4 - 16
= -12 < 0
Hence the roots are unreal.
\[- 2x + x^2 + 3 = 1\]
= x2 – 2x -2 = 0
Discriminant, D = 4 – 8 = - 4 < 0
Hence the given equation has no real roots.
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
9x2 + 4 = 0
4x2 − 12x + 25 = 0
\[4 x^2 + 1 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[2 x^2 + x + 1 = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.