हिंदी

The Value of a Such that X 2 − 11 X + a = 0 and X 2 − 14 X + 2 a = 0 May Have a Common Root is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is

विकल्प

  • 0

  • 12

  • 24

  • 32

MCQ

उत्तर

(a) and (c)

Let \[\alpha\] be the common roots of the equations \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\]

Therefore,

\[\alpha^2 - 11\alpha + a = 0\]     ... (1)

\[\alpha^2 - 14\alpha + 2a = 0\]  ... (2)

Solving (1) and (2) by cross multiplication, we get,

\[\frac{\alpha^2}{- 22a + 14a} = \frac{\alpha}{a - 2a} = \frac{1}{- 14 + 11}\]

\[ \Rightarrow \alpha^2 = \frac{- 22a + 14a}{- 14 + 11}, \alpha = \frac{a - 2a}{- 14 + 11}\]

\[ \Rightarrow \alpha^2 = \frac{- 8a}{- 3} = \frac{8a}{3}, \alpha = \frac{- a}{- 3} = \frac{a}{3}\]

\[ \Rightarrow \left( \frac{a}{3} \right)^2 = \frac{8a}{3}\]

\[ \Rightarrow a^2 = 24a\]

\[ \Rightarrow a^2 - 24a = 0\]

\[ \Rightarrow a\left( a - 24 \right) = 0\]

\[ \Rightarrow a = 0 \text { or } a = 24\]

Disclaimer: The solution given in the book is incomplete. The solution is created according to the question given in the book and both the options are correct.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.4 | Q 13 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


Solve the equation 21x2 – 28x + 10 = 0


x2 + 1 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 + 2x + 5 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×