हिंदी

Solve the equation 27x2 – 10x + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation 27x2 – 10x + 1 = 0

योग

उत्तर

The given quadratic equation is 27x2 – 10x + 1 = 0

On comparing the given equation with ax2 + bx + c = 0, we obtain

a = 27, b = –10, and c = 1

Therefore, the discriminant of the given equation is

D = b2 – 4ac = (–10)2 – 4 × 27 × 1 = 100 – 108 = –8

Therefore, the required solutions are

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 8 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation `3x^2 - 4x + 20/3 = 0`


9x2 + 4 = 0


4x2 − 12x + 25 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 - x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×