हिंदी

Solve the Following Quadratic Equation: X 2 − X + ( 1 + I ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]

उत्तर

\[ x^2 - x + \left( 1 + i \right) = 0\]

\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]

\[a = 1, b = - 1 \text { and } c = \left( 1 + i \right)\]

\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]

\[ \Rightarrow x = \frac{1 \pm \sqrt{1 - 4\left( 1 + i \right)}}{2}\]

\[ \Rightarrow x = \frac{1 \pm \sqrt{- 3 - 4i}}{2} . . . \left( i \right)\]

\[\text { Let } x + iy = \sqrt{- 3 - 4i} . \text { Then }, \]

\[ \Rightarrow \left( x + iy \right)^2 = - 3 - 4i\]

\[ \Rightarrow x^2 - y^2 + 2ixy = - 3 - 4i \]

\[ \Rightarrow x^2 - y^2 = - 3 \text { and } 2xy = - 4 . . . \left( ii \right)\]

\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]

\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 9 + 16 = 25\]

\[ \Rightarrow x^2 + y^2 = 5 . . . \left( iii \right) \]

\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]

\[ \Rightarrow x = \pm 1 \text { and } y = \pm 2\]

\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]

\[ \Rightarrow x = 1, y = - 2 \text { or,} x = - 1, y = 2\]

\[ \Rightarrow x + iy = 1 - 2i \text { or }- 1 + 2i\]

\[ \Rightarrow \sqrt{- 3 - 4i} = \pm \left( 1 - 2i \right)\]

\[\text{ Substituting these values in } \left( i \right), \text { we get }\]

\[ \Rightarrow x = \frac{1 \pm \left( 1 - 2i \right)}{2}\]

\[ \Rightarrow x = 1 - i, i\]

\[\text { So, the roots of the given quadratic equation are 1 - i and } i .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.2 | Q 2.08 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation 27x2 – 10x + 1 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


9x2 + 4 = 0


\[x^2 - 4x + 7 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×