Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
उत्तर
\[ x^2 + 4ix - 4 = 0\]
\[ \Rightarrow x^2 + 2 \times x \times 2i + \left( 2i \right)^2 = 0\]
\[ \Rightarrow \left( x + 2i \right)^2 = 0\]
\[ \Rightarrow x + 2i = 0\]
\[ \Rightarrow x = - 2i\]
\[\text { So, the roots of the given quadratic equation are - 2i and } - 2i .\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 9 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
x2 + 1 = 0
9x2 + 4 = 0
\[4 x^2 + 1 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.