Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
उत्तर
\[ 2 x^2 + \sqrt{15} ix - i = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]
\[a = 2, b = \sqrt{15} i \text { and } c = - i\]
\[x = \frac{- b \pm \sqrt{b^2 - 4a c}}{2a}\]
\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \sqrt{\left( \sqrt{15} i \right)^2 + 8i}}{4}\]
\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \sqrt{8i - 15}}{4} . . . \left( i \right)\]
\[\text { Let }x + iy = \sqrt{8i - 15} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = 8i - 15\]
\[ \Rightarrow x^2 - y^2 + 2ixy = 8i - 15 \]
\[ \Rightarrow x^2 - y^2 = - 15 \text { and } 2xy = 8 . . . \left( ii \right)\]
\[\text { Now, } \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 225 + 64 = 289\]
\[ \Rightarrow x^2 + y^2 = 17 . . . \left( iii \right) \]
\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]
\[ \Rightarrow x = \pm 1\text { and } y = \pm 4\]
\[\text { As, xy is positive } \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow x = 1, y = 4 \text { or, } x = - 1, y = - 4\]
\[ \Rightarrow x + iy = 1 + 4i \text { or,} - 1 - 4i\]
\[ \Rightarrow \sqrt{8i - 15} = \pm \left( 1 - 4i \right)\]
\[\text { Substituting these values in } \left( i \right), \text { we get }, \]
\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \left( 1 + 4i \right)}{4} \]
\[ \Rightarrow x = \frac{1 + \left( 4 - \sqrt{15} \right)i}{4} , \frac{- 1 - \left( 4 + \sqrt{15} \right)i}{4}\]
\[\text { So, the roots of the given quadratic equation are } \frac{1 + \left( 4 - \sqrt{15} \right)i}{4} \text { and } \frac{- 1 - \left( 4 + \sqrt{15} \right)i}{4} . \]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 9 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
Solve the equation 27x2 – 10x + 1 = 0
Solve the equation 21x2 – 28x + 10 = 0
x2 + 2x + 5 = 0
\[4 x^2 + 1 = 0\]
\[x^2 + 2x + 5 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.