मराठी

Solve the Following Quadratic Equation: 2 X 2 + √ 15 I X − I = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]

उत्तर

\[ 2 x^2 + \sqrt{15} ix - i = 0\]

\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]

\[a = 2, b = \sqrt{15} i \text { and } c = - i\]

\[x = \frac{- b \pm \sqrt{b^2 - 4a c}}{2a}\]

\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \sqrt{\left( \sqrt{15} i \right)^2 + 8i}}{4}\]

\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \sqrt{8i - 15}}{4} . . . \left( i \right)\]

\[\text { Let }x + iy = \sqrt{8i - 15} . \text { Then }, \]

\[ \Rightarrow \left( x + iy \right)^2 = 8i - 15\]

\[ \Rightarrow x^2 - y^2 + 2ixy = 8i - 15 \]

\[ \Rightarrow x^2 - y^2 = - 15 \text { and } 2xy = 8 . . . \left( ii \right)\]

\[\text { Now, } \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]

\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 225 + 64 = 289\]

\[ \Rightarrow x^2 + y^2 = 17 . . . \left( iii \right) \]

\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]

\[ \Rightarrow x = \pm 1\text { and } y = \pm 4\]

\[\text { As, xy is positive } \left[ \text { From } \left( ii \right) \right]\]

\[ \Rightarrow x = 1, y = 4 \text { or, } x = - 1, y = - 4\]

\[ \Rightarrow x + iy = 1 + 4i \text { or,} - 1 - 4i\]

\[ \Rightarrow \sqrt{8i - 15} = \pm \left( 1 - 4i \right)\]

\[\text { Substituting these values in } \left( i \right), \text { we get }, \]

\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \left( 1 + 4i \right)}{4} \]

\[ \Rightarrow x = \frac{1 + \left( 4 - \sqrt{15} \right)i}{4} , \frac{- 1 - \left( 4 + \sqrt{15} \right)i}{4}\]

\[\text { So, the roots of the given quadratic equation are } \frac{1 + \left( 4 - \sqrt{15} \right)i}{4} \text { and } \frac{- 1 - \left( 4 + \sqrt{15} \right)i}{4} . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.2 | Q 2.07 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


x2 + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[- x^2 + x - 2 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×