Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
उत्तर
\[ 2 x^2 + \sqrt{15} ix - i = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0, \text { we get }\]
\[a = 2, b = \sqrt{15} i \text { and } c = - i\]
\[x = \frac{- b \pm \sqrt{b^2 - 4a c}}{2a}\]
\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \sqrt{\left( \sqrt{15} i \right)^2 + 8i}}{4}\]
\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \sqrt{8i - 15}}{4} . . . \left( i \right)\]
\[\text { Let }x + iy = \sqrt{8i - 15} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = 8i - 15\]
\[ \Rightarrow x^2 - y^2 + 2ixy = 8i - 15 \]
\[ \Rightarrow x^2 - y^2 = - 15 \text { and } 2xy = 8 . . . \left( ii \right)\]
\[\text { Now, } \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 225 + 64 = 289\]
\[ \Rightarrow x^2 + y^2 = 17 . . . \left( iii \right) \]
\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]
\[ \Rightarrow x = \pm 1\text { and } y = \pm 4\]
\[\text { As, xy is positive } \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow x = 1, y = 4 \text { or, } x = - 1, y = - 4\]
\[ \Rightarrow x + iy = 1 + 4i \text { or,} - 1 - 4i\]
\[ \Rightarrow \sqrt{8i - 15} = \pm \left( 1 - 4i \right)\]
\[\text { Substituting these values in } \left( i \right), \text { we get }, \]
\[ \Rightarrow x = \frac{- \sqrt{15} i \pm \left( 1 + 4i \right)}{4} \]
\[ \Rightarrow x = \frac{1 + \left( 4 - \sqrt{15} \right)i}{4} , \frac{- 1 - \left( 4 + \sqrt{15} \right)i}{4}\]
\[\text { So, the roots of the given quadratic equation are } \frac{1 + \left( 4 - \sqrt{15} \right)i}{4} \text { and } \frac{- 1 - \left( 4 + \sqrt{15} \right)i}{4} . \]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3 = 0
Solve the equation x2 + 3x + 5 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
x2 + 1 = 0
9x2 + 4 = 0
x2 + 2x + 5 = 0
x2 + x + 1 = 0
\[4 x^2 + 1 = 0\]
\[x^2 + 2x + 5 = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[6 x^2 - 17ix - 12 = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.