मराठी

If α, β Are Roots of the Equation 4 X 2 + 3 X + 7 = 0 , Then 1 / α + 1 / β is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to

पर्याय

  • 7/3

  • −7/3

  • 3/7

  • -3/7

MCQ

उत्तर

−3/7

Given equation: 

\[4 x^2 + 3x + 7 = 0\]

Also, 

\[\alpha\] and \[\beta\] are the roots of the equation.

Sum of the roots = \[\alpha + \beta = \frac{- \text { Coefficient of }x}{\text { Coefficient of } x^2} = - \frac{3}{4}\]

Product of the roots = \[\alpha\beta = \frac{\text { Constant term }}{\text { Coefficient of  }x^2} = \frac{7}{4}\]

  ∴  \[\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{- \frac{3}{4}}{\frac{7}{4}} = - \frac{3}{7}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.4 | Q 4 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation 2x2 + x + 1 = 0


Solve the equation 27x2 – 10x + 1 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


9x2 + 4 = 0


x2 + x + 1 = 0


\[4 x^2 + 1 = 0\]


\[x^2 + 2x + 5 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[2 x^2 + x + 1 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×