Advertisements
Advertisements
प्रश्न
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
पर्याय
7/3
−7/3
3/7
-3/7
उत्तर
−3/7
Given equation:
\[4 x^2 + 3x + 7 = 0\]
Also,
\[\alpha\] and \[\beta\] are the roots of the equation.
Sum of the roots = \[\alpha + \beta = \frac{- \text { Coefficient of }x}{\text { Coefficient of } x^2} = - \frac{3}{4}\]
Product of the roots = \[\alpha\beta = \frac{\text { Constant term }}{\text { Coefficient of }x^2} = \frac{7}{4}\]
∴ \[\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{- \frac{3}{4}}{\frac{7}{4}} = - \frac{3}{7}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation 2x2 + x + 1 = 0
Solve the equation 27x2 – 10x + 1 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
x2 + 1 = 0
9x2 + 4 = 0
x2 + x + 1 = 0
\[4 x^2 + 1 = 0\]
\[x^2 + 2x + 5 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[2 x^2 + x + 1 = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.