Advertisements
Advertisements
प्रश्न
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
पर्याय
\[p^2 + 4q = 1\]
\[p^2 - 4q = 1\]
\[p^2 + 4 q^2 = (1 + 2q )^2\]
\[4 p^2 + q^2 = (1 + 2p )^2\]
उत्तर
\[p^2 - 4q = 1\]
Given equation:
\[x^2 - px + q = 0\]
Also
\[\alpha \text { and } \beta\] are the roots of the equation such that \[\alpha - \beta = 1\].
Sum of the roots = \[\alpha + \beta = \frac{- \text { Coefficient of } x}{\text { Coefficient of } x^2} = - \left( \frac{- p}{1} \right) = p\]
Product of the roots = \[\alpha\beta = \frac{\text { Constant term }}{\text { Coefficient of } x^2} = q\]
\[\therefore (\alpha + \beta )^2 - (\alpha - \beta )^2 = 4\alpha\beta\]
\[ \Rightarrow p^2 - 1 = 4q\]
\[ \Rightarrow p^2 - 4q = 1\]
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 5 = 0
Solve the equation `x^2 + x + 1/sqrt2 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
\[4 x^2 + 1 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[2 x^2 + x + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.