मराठी

If z1 = 2 – i, z2 = 1 + i, find |z1+z2+1z1-z2+1| - Mathematics

Advertisements
Advertisements

प्रश्न

If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`

बेरीज

उत्तर

`z_1  = 2  - i,  z_2  = 1  +  i`

∴ `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|  = |((2-i)+(1 + i)+1)/((2-i) - (1 + i) + 1)|`

= `|4/(2-2i)|  =  |4/(2(1 - i))|`

= `|2/(1 - i) xx (1 + i)/(1 + i)|  =  |(2(1 + i))/(1^2 - i^2)|`

= `|(2(1 + i))/(1 + 1)|`      [i2  = - 1]

= `|(2(1 +i))/2|`

= `1 + i = sqrt(1^2  + 1^2)  = sqrt2`

The value of this type is `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)| "is" sqrt2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [पृष्ठ ११३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 10 | पृष्ठ ११३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation 21x2 – 28x + 10 = 0


9x2 + 4 = 0


\[4 x^2 + 1 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×