Advertisements
Advertisements
प्रश्न
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
उत्तर
\[\text { Given: } \]
\[(a - b) x^2 + (b - c)x + (c - a) = 0\]
\[ \Rightarrow x^2 + \frac{b - c}{a - b}x + \frac{c - a}{a - b} = 0\]
\[ \Rightarrow x^2 - \frac{c - a}{a - b}x - x + \frac{c - a}{a - b} = 0 \left[ \because \frac{b - c}{a - b} = \frac{- c + a - a + b}{a - b} = - \frac{c - a}{a - b} - 1 \right]\]
\[ \Rightarrow x\left( x - \frac{c - a}{a - b} \right) - 1\left( x + \frac{c - a}{a - b} \right) = 0\]
\[ \Rightarrow \left( x - \frac{c - a}{a - b} \right)\left( x - 1 \right) = 0\]
\[ \Rightarrow x - \frac{c - a}{a - b} = 0 or x - 1 = 0\]
\[ \Rightarrow x = \frac{c - a}{a - b} or x = 1\]
\[\text { Thus, roots of the equation are } \frac{c - a}{a - b} \text { and }1 .\]
Now,
\[\alpha + \beta = - \frac{b - c}{a - b}\]
\[ \Rightarrow 1 + \beta = - \frac{b - c}{a - b}\]
\[ \Rightarrow \beta = - \frac{b - c}{a - b} - 1 = \frac{c - a}{a - b}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation 27x2 – 10x + 1 = 0
x2 + 1 = 0
9x2 + 4 = 0
\[x^2 - 4x + 7 = 0\]
\[x^2 + 2x + 5 = 0\]
\[x^2 + x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.