हिंदी

Write Roots of the Equation ( a − B ) X 2 + ( B − C ) X + ( C − a ) = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .

उत्तर

\[\text { Given: } \]

\[(a - b) x^2 + (b - c)x + (c - a) = 0\]

\[ \Rightarrow x^2 + \frac{b - c}{a - b}x + \frac{c - a}{a - b} = 0\]

\[ \Rightarrow x^2 - \frac{c - a}{a - b}x - x + \frac{c - a}{a - b} = 0 \left[ \because \frac{b - c}{a - b} = \frac{- c + a - a + b}{a - b} = - \frac{c - a}{a - b} - 1 \right]\]

\[ \Rightarrow x\left( x - \frac{c - a}{a - b} \right) - 1\left( x + \frac{c - a}{a - b} \right) = 0\]

\[ \Rightarrow \left( x - \frac{c - a}{a - b} \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x - \frac{c - a}{a - b} = 0 or x - 1 = 0\]

\[ \Rightarrow x = \frac{c - a}{a - b} or x = 1\]

\[\text { Thus, roots of the equation are } \frac{c - a}{a - b} \text { and  }1 .\]

Now,

\[\alpha + \beta = - \frac{b - c}{a - b}\]

\[ \Rightarrow 1 + \beta = - \frac{b - c}{a - b}\]

\[ \Rightarrow \beta = - \frac{b - c}{a - b} - 1 = \frac{c - a}{a - b}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.3 | Q 6 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation   `x^2 -2x + 3/2 = 0`  


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[x^2 - 4x + 7 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 + x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×