Advertisements
Advertisements
प्रश्न
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.
उत्तर
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is circle.
Explanation:
Given that: `|(z - 2)/(z + 2)| = pi/6`
Let z = x + iy
⇒ `|(x + iy - 2)/(x + iy + 2)| = pi/6`
⇒ `|((x - 2) + iy)/((x + 2) + iy)| = pi/6`
⇒ `6|(x - 2) + iy| = pi|(x + 2) + iy|`
⇒ `6sqrt((x - 2)^2 + y^2) = pisqrt((x + 2)^2 + y^2)`
⇒ `36[x^2 + 4 - 4x + y^2] = pi^2[x^2 + 4 + 4x + y^2]`
⇒ 36x2 + 144 – 144x + 36y2 = π2x2 + 4π2 + 4π2x + π2y2
⇒ (36 – π2)x2 + (36 – π2)y2 – (144 + 4π2)x + 144 – 4π2 = 0
Which represents are equation of a circle.
APPEARS IN
संबंधित प्रश्न
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation 21x2 – 28x + 10 = 0
\[x^2 + 2x + 5 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
The number of solutions of `x^2 + |x - 1| = 1` is ______.
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.