Advertisements
Advertisements
प्रश्न
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
विकल्प
\[( - \infty , - 3] \cup [5, \infty )\]
[−3, 5]
(−4, −3]
(−3, −1]
उत्तर
\[m \in ( - 4, - 3]\] The roots of the quadratic equation \[x^2 - (m + 1)x + m + 4 = 0\] will be real, if its discriminant is greater than or equal to zero.
\[\therefore \left( m + 1 \right)^2 - 4\left( m + 4 \right) \geq 0\]
\[ \Rightarrow \left( m - 5 \right)\left( m + 3 \right) \geq 0\]
\[ \Rightarrow m \leq - 3 \text { or } m \geq 5 . . . (1)\]
\[\Rightarrow m + 1 < 0\]
\[ \Rightarrow m < - 1 . . . (2)\]
and product of zeros >0
\[\Rightarrow m + 4 > 0\]
\[ \Rightarrow m > - 4 . . . (3)\]
From (1), (2) and (3), we get,
\[m \in ( - 4, - 3]\]
Disclaimer: The solution given in the book is incorrect. The solution here is created according to the question given in the book.
APPEARS IN
संबंधित प्रश्न
Solve the equation x2 + 3x + 5 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
x2 + 1 = 0
9x2 + 4 = 0
4x2 − 12x + 25 = 0
\[4 x^2 + 1 = 0\]
\[x^2 + 2x + 5 = 0\]
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.