हिंदी

√ 3 X 2 − √ 2 X + 3 √ 3 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]

उत्तर

Given:

\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get 
\[a = \sqrt{3}, b = - \sqrt{2}\]  and   \[c = 3\sqrt{3}\].
Substituting these values in 
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\], we get:
\[\alpha = \frac{\sqrt{2} + \sqrt{2 - 4 \times \sqrt{3} \times 3\sqrt{3}}}{2\sqrt{3}}\] and   \[\beta = \frac{\sqrt{2} - \sqrt{2 - 4 \times \sqrt{3} \times 3\sqrt{3}}}{2\sqrt{3}}\]
\[\Rightarrow \alpha = \frac{\sqrt{2} + \sqrt{- 34}}{2\sqrt{3}}\] and \[\beta = \frac{\sqrt{2} - \sqrt{- 34}}{2\sqrt{3}}\]
\[\Rightarrow \alpha = \frac{\sqrt{2} + i\sqrt{34}}{2\sqrt{3}}\]  and  \[\beta = \frac{\sqrt{2} - i\sqrt{34}}{2\sqrt{3}}\]  
Hence, the roots of the equation are 
\[\frac{\sqrt{2} \pm i\sqrt{34}}{2\sqrt{3}}\].
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.1 | Q 20 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


9x2 + 4 = 0


x2 + x + 1 = 0


\[5 x^2 - 6x + 2 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×