Advertisements
Advertisements
प्रश्न
\[13 x^2 + 7x + 1 = 0\]
उत्तर
Given:
\[13 x^2 + 7x + 1 = 0\]
Comparing the given equation with the general form of the quadratic equation
APPEARS IN
संबंधित प्रश्न
Solve the equation 2x2 + x + 1 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation 27x2 – 10x + 1 = 0
Solve the equation 21x2 – 28x + 10 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
\[4 x^2 + 1 = 0\]
\[x^2 + 2x + 5 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[x^2 - x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.