हिंदी

If a and b are roots of the equation x2−px+q=0, than write the value of 1a+1b. - Mathematics

Advertisements
Advertisements

प्रश्न

If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].

योग

उत्तर

Given: 

\[x^2 - px + q = 0\]

Also, 

\[a\] and \[b\]  are the roots of the given equation.
Sum of the roots = \[a + b = p\]          ...(1)

Product of the roots = \[ab = q\]          ...(2)

Now, 

\[\frac{1}{a} + \frac{1}{b} = \frac{b + a}{ab} = \frac{p}{q}\]

 [Using equation (1) and (2)]

Hence, the value of  \[\frac{1}{a} + \frac{1}{b}\] is  \[\frac{p}{q} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.3 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.3 | Q 2 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 21x2 – 28x + 10 = 0


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


\[4 x^2 + 1 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 - x + 1 = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×