हिंदी

If the Equations X 2 + 2 X + 3 λ = 0 and 2 X 2 + 3 X + 5 λ = 0 Have a Non-zero Common Roots, Then λ = - Mathematics

Advertisements
Advertisements

प्रश्न

If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =

विकल्प

  • 1

  • -1

  • 3

  • none of these.

MCQ

उत्तर

-1

Let \[\alpha\] be the common roots of the equations, \[x^2 + 2x + 3\lambda = 0\] and \[2 x^2 + 3x + 5\lambda = 0\]

Therefore,

\[\alpha^2 + 2\alpha + 3\lambda = 0\]      ... (1)

\[2 \alpha^2 + 3\alpha + 5\lambda = 0\]       ... (2)

Solving (1) and (2) by cross multiplication, we get

\[\frac{\alpha^2}{10\lambda - 9\lambda} = \frac{\alpha}{6\lambda - 5\lambda} = \frac{1}{3 - 4}\]

\[ \Rightarrow \alpha^2 = - \lambda, \alpha = - \lambda\]

\[ \Rightarrow - \lambda = \lambda^2 \]

\[ \Rightarrow \lambda = - 1\]


 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Quadratic Equations - Exercise 14.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 14 Quadratic Equations
Exercise 14.4 | Q 15 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the equation –x2 + x – 2 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


Solve the equation 27x2 – 10x + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


4x2 − 12x + 25 = 0


\[x^2 - x + 1 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[8 x^2 - 9x + 3 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×