Advertisements
Advertisements
Question
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
Options
1
-1
3
none of these.
Solution
-1
Let \[\alpha\] be the common roots of the equations, \[x^2 + 2x + 3\lambda = 0\] and \[2 x^2 + 3x + 5\lambda = 0\]
Therefore,
\[\alpha^2 + 2\alpha + 3\lambda = 0\] ... (1)
\[2 \alpha^2 + 3\alpha + 5\lambda = 0\] ... (2)
Solving (1) and (2) by cross multiplication, we get
\[\frac{\alpha^2}{10\lambda - 9\lambda} = \frac{\alpha}{6\lambda - 5\lambda} = \frac{1}{3 - 4}\]
\[ \Rightarrow \alpha^2 = - \lambda, \alpha = - \lambda\]
\[ \Rightarrow - \lambda = \lambda^2 \]
\[ \Rightarrow \lambda = - 1\]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3 = 0
Solve the equation 2x2 + x + 1 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
Solve the equation 27x2 – 10x + 1 = 0
x2 + 1 = 0
9x2 + 4 = 0
\[5 x^2 - 6x + 2 = 0\]
\[2 x^2 + x + 1 = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.