English

If One Root of the Equation X 2 + P X + 12 = 0 While the Equation X 2 + P X + Q = 0 Has Equal Roots, the Value of Q is - Mathematics

Advertisements
Advertisements

Question

If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is

Options

  •  49/4

  •  4/49

  • 4

  • none of these

MCQ

Solution

49/4
It is given that, 4 is the root of the equation \[x^2 + px + 12 = 0\].

\[\therefore 16 + 4p + 12 = 0\]

\[ \Rightarrow p = - 7\]

It is also given that, the equation

\[x^2 + px + q = 0\] has equal roots. So, the discriminant of \[x^2 + px + q = 0\] will be zero.

\[\therefore p^2 - 4q = 0\]

\[ \Rightarrow 4q = \left( - 7 \right)^2 = 49\]

\[ \Rightarrow q = \frac{49}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.4 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.4 | Q 16 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3 = 0


Solve the equation 2x2 + x + 1 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


Solve the equation 21x2 – 28x + 10 = 0


x2 + x + 1 = 0


\[x^2 + x + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - 4 x - 4i = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\]  have a non-zero common roots, then λ =


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


The least value of which makes the roots of the equation  \[x^2 + 5x + k = 0\]  imaginary is


The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Show that `|(z - 2)/(z - 3)|` = 2 represents a circle. Find its centre and radius.


If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×