English

The Values of X Satisfying Log3 ( X 2 + 4 X + 12 ) = 2 Are - Mathematics

Advertisements
Advertisements

Question

The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are

Options

  • 2, −4

  • 1, −3

  • −1, 3

  • −1, −3

MCQ

Solution

−1, −3 The given equation is \[\log_3 ( x^2 + 4x + 12) = 2\] .

\[\Rightarrow x^2 + 4x + 12 = 3^2 = 9\]

\[ \Rightarrow x^2 + 4x + 3 = 0\]

\[ \Rightarrow \left( x + 1 \right)\left( x + 3 \right) = 0\]

\[ \Rightarrow x = - 1, - 3\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.4 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.4 | Q 5 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation –x2 + x – 2 = 0


Solve the equation `x^2 + x + 1/sqrt2 = 0`


Solve the equation 21x2 – 28x + 10 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[x^2 - 4x + 7 = 0\]


\[x^2 + 2x + 5 = 0\]


\[x^2 - x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[21 x^2 - 28x + 10 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[2 x^2 + x + 1 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[2 x^2 + \sqrt{15}ix - i = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×