English

27 X 2 − 10 + 1 = 0 - Mathematics

Advertisements
Advertisements

Question

\[27 x^2 - 10 + 1 = 0\]

Solution

Given: 

\[27 x^2 - 10x + 1 = 0\]

Comparing the given equation with the general form of the quadratic equation 

\[a x^2 + bx + c = 0\], we get
\[a = 27, b = - 10\] and \[c = 1\] .
Substituting these values in
\[\alpha = \frac{- b + \sqrt{b^2 - 4ac}}{2a}\] and \[\beta = \frac{- b - \sqrt{b^2 - 4ac}}{2a}\],we get:
\[\alpha = \frac{10 + \sqrt{100 - 4 \times 27 \times 1}}{2 \times 27}\] and \[\beta = \frac{10 - \sqrt{100 - 4 \times 27 \times 1}}{2 \times 27}\]
\[\Rightarrow \alpha = \frac{10 + \sqrt{100 - 108}}{54}\]   and   \[\beta = \frac{10 - \sqrt{100 - 108}}{54}\]
\[\Rightarrow \alpha = \frac{10 + \sqrt{- 8}}{54}\]  and  \[\beta = \frac{10 - \sqrt{- 8}}{54}\]
\[\Rightarrow \alpha = \frac{10 + \sqrt{8 i^2}}{54}\] and \[\beta = \frac{10 - \sqrt{8 i^2}}{54}\]
\[\Rightarrow \alpha = \frac{10 + i2\sqrt{2}}{54}\] and   \[\beta = \frac{10 - i2\sqrt{2}}{54}\]
\[\Rightarrow \alpha = \frac{2(5 + i\sqrt{2})}{54}\]    and \[\beta = \frac{2(5 - i\sqrt{2})}{54}\]
\[\Rightarrow \alpha = \frac{5}{27} + \frac{\sqrt{2}}{27}i\] and \[\beta = \frac{5}{27} - \frac{\sqrt{2}}{27}i\]
Hence, the roots of the equation are 
\[\frac{5}{27} \pm \frac{\sqrt{2}}{27}i\] .
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 14 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation `3x^2 - 4x + 20/3 = 0`


x2 + 1 = 0


x2 + 2x + 5 = 0


\[4 x^2 + 1 = 0\]


\[x^2 - 4x + 7 = 0\]


\[13 x^2 + 7x + 1 = 0\]


\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]


Solving the following quadratic equation by factorization method:

\[6 x^2 - 17ix - 12 = 0\]

 

Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Solve the following quadratic equation:

\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

The equation of the smallest degree with real coefficients having 1 + i as one of the roots is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×