Advertisements
Advertisements
Question
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
Solution
Irrational roots always occur in conjugate pairs.
If \[2 + \sqrt{3} \text { is a root and } 2 - \sqrt{3}\text { is its conjugate root }. \]
\[ \Rightarrow \left( 2 + \sqrt{3} + 2 - \sqrt{3} \right) = - p\]
\[ \Rightarrow 4 = - 9\]
\[ \Rightarrow p = - 4\]
\[\text{ Also, } \left( 2 + \sqrt{3} \right)\left( 2 - \sqrt{3} \right) = q\]
\[ \Rightarrow 4 - 3 = q\]
\[ \Rightarrow q = 1\]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3 = 0
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
Solve the equation `x^2 -2x + 3/2 = 0`
Solve the equation 21x2 – 28x + 10 = 0
9x2 + 4 = 0
\[x^2 - 4x + 7 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[21 x^2 - 28x + 10 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.