Advertisements
Advertisements
Question
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Solution
\[ x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2}i = 0\]
\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0,\text { we get }\]
\[a = 1, b = - \left( 3\sqrt{2} - 2i \right) \text { and } c = - \sqrt{2}i\]
\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]
⇒ x = `(-(-3sqrt2-2i)±sqrt((-(3sqrt2-2i))^2)-4(1)(-sqrt2i))/2(1)`
\[ \Rightarrow x = \frac{\left (- 3\sqrt{2} - 2i) \right) \pm \sqrt{\left( 3\sqrt{2} - 2i \right)^2 - 4\sqrt{2}i}}{2}\]
\[ \Rightarrow x = \frac{\left( 3\sqrt{2} - 2i \right) \pm \sqrt{14 - 8\sqrt{2}i}}{2} . . . \left( i \right)\]
\[\text { Let } x + iy = \sqrt{14 - 8\sqrt{2}i} . \text { Then }, \]
\[ \Rightarrow \left( x + iy \right)^2 = 14 - 8\sqrt{2}i\]
\[ \Rightarrow x^2 - y^2 + 2ixy = 14 - 8\sqrt{2}i \]
\[ \Rightarrow x^2 - y^2 = 14 \text { and } 2xy = - 8\sqrt{2} . . . \left( ii \right)\]
\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]
\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 196 + 128 = 324\]
\[ \Rightarrow x^2 + y^2 = 18 . . . \left( iii \right) \]
\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]
\[ \Rightarrow x = \pm 4 \text{ and }y = \pm \sqrt{2}\]
\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow x = - 4, y = \sqrt{2}\text{ or }, x = 4, y = - \sqrt{2}\]
\[ \Rightarrow x + iy = 4 - \sqrt{2} i \text { or, } - 4 + \sqrt{2} i\]
\[ \Rightarrow \sqrt{14 - 8\sqrt{2}i} = \pm \left( 4 - \sqrt{2} i \right)\]
\[\text { Substituting these values in } \left( i \right), \text { we get }\]
\[ \Rightarrow x = \frac{\left( 3\sqrt{2} - 2i \right) \pm \left( 4 - \sqrt{2} i \right)}{2}\]
\[ \Rightarrow x = \frac{\left( 3\sqrt{2} + 4 \right) - i\left( 2 + \sqrt{2} \right)}{2}, \frac{\left( 3\sqrt{2} - 4 \right) - i\left( 2 - \sqrt{2} \right)}{2}\]
\[\text { So, the roots of the given quadratic equation are } \frac{\left( 3\sqrt{2} + 4 \right) - i\left( 2 + \sqrt{2} \right)}{2} \text{ and } \frac{\left( 3\sqrt{2} - 4 \right) - i\left( 2 - \sqrt{2} \right)}{2} .\]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3 = 0
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
Solve the equation 21x2 – 28x + 10 = 0
x2 + 2x + 5 = 0
4x2 − 12x + 25 = 0
x2 + x + 1 = 0
\[4 x^2 + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If the equations \[x^2 + 2x + 3\lambda = 0 \text { and } 2 x^2 + 3x + 5\lambda = 0\] have a non-zero common roots, then λ =
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.
If `|(z - 2)/(z + 2)| = pi/6`, then the locus of z is ______.