English

The Number of Real Solutions of ∣ ∣ 2 X − X 2 − 3 ∣ ∣ = 1 is - Mathematics

Advertisements
Advertisements

Question

The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is

Options

  • 0

  • 2

  • 3

  • 4

MCQ

Solution

2

Explanation:

Given equation: 

\[|2x - x^2 - 3| = 1\]

\[ 2x - x^2 - 3 = 1\]

\[ \Rightarrow 2x - x^2 - 4 = 0\]

\[ \Rightarrow x^2 - 2x + 4 = 0\]

Discriminant D = 4 - 16 

= -12 < 0

Hence the roots are unreal. 

\[- 2x + x^2 + 3 = 1\]

= x2 – 2x -2 = 0 

Discriminant, D = 4 – 8 = - 4 < 0 

Hence the given equation has no real roots.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.4 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.4 | Q 9 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 + 3x + 9 = 0


Solve the equation –x2 + x – 2 = 0


Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Imz1 Imz2


x2 + 1 = 0


\[x^2 + 2x + 5 = 0\]


\[5 x^2 - 6x + 2 = 0\]


\[21 x^2 + 9x + 1 = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]


Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


The number of solutions of `x^2 + |x - 1| = 1` is ______. 


If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is


If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×