Advertisements
Advertisements
Question
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
Options
0
2
3
4
Solution
2
Explanation:
Given equation:
\[|2x - x^2 - 3| = 1\]
\[ 2x - x^2 - 3 = 1\]
\[ \Rightarrow 2x - x^2 - 4 = 0\]
\[ \Rightarrow x^2 - 2x + 4 = 0\]
Discriminant D = 4 - 16
= -12 < 0
Hence the roots are unreal.
\[- 2x + x^2 + 3 = 1\]
= x2 – 2x -2 = 0
Discriminant, D = 4 – 8 = - 4 < 0
Hence the given equation has no real roots.
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3x + 9 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation `sqrt2x^2 + x + sqrt2 = 0`
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
x2 + 1 = 0
\[x^2 + 2x + 5 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[21 x^2 + 9x + 1 = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[- x^2 + x - 2 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
The number of solutions of `x^2 + |x - 1| = 1` is ______.
If the roots of \[x^2 - bx + c = 0\] are two consecutive integers, then b2 − 4 c is
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then