Advertisements
Advertisements
Question
For the equation \[\left| x \right|^2 + \left| x \right| - 6 = 0\] ,the sum of the real roots is
Options
1
0
2
none of these
Solution
0
\[\text { Let } p = \left| x \right|\]
\[ \Rightarrow p^2 + p - 6 = 0\]
\[ \Rightarrow p^2 + 3p - 2p - 6 = 0\]
\[ \Rightarrow \left( p + 3 \right)\left( p - 2 \right) = 0\]
\[ \Rightarrow p = - 3, 2\]
\[\text { Also }, \left| x \right| = p\]
\[ \Rightarrow \left| x \right| = 2, or \left| x \right| = - 3\]
\[\text { Modulus can not be negative }, \]
\[ \therefore \left| x \right| = 2\]
\[ \Rightarrow x = \pm 2\]
\[ \Rightarrow x = 2 \text { or } - 2\]
\[\text { Sum of the roots of x is 0 }\]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3x + 9 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation `x^2 + x/sqrt2 + 1 = 0`
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2 – Imz1 Imz2
Solve the equation 21x2 – 28x + 10 = 0
9x2 + 4 = 0
x2 + x + 1 = 0
\[x^2 - x + 1 = 0\]
\[x^2 + x + 1 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[x^2 - 2x + \frac{3}{2} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
If one root of the equation \[x^2 + px + 12 = 0\] while the equation \[x^2 + px + q = 0\] has equal roots, the value of q is
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]