Advertisements
Advertisements
Question
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
Options
c
c − 1
1 − c
none of these
Solution
1 − c
Given equation:
\[x^2 - p(x + 1) - c = 0 \]
\[or x^2 - px - p - c = 0\]
Also
\[\alpha \text { and } \beta\] are the roots of the equation.
Sum of the roots = \[\alpha + \beta = p\]
Product of the roots = \[\alpha\beta = - (c + p)\]
\[\text { Then }, (\alpha + 1) (\beta + 1) = \alpha\beta + \alpha + \beta + 1 \]
\[ = - (c + p) + p + 1 \]
\[ = - c - p + p + 1\]
\[ = 1 - c\]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3x + 9 = 0
Solve the equation –x2 + x – 2 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
x2 + 2x + 5 = 0
\[4 x^2 + 1 = 0\]
\[x^2 - 4x + 7 = 0\]
\[5 x^2 - 6x + 2 = 0\]
\[x^2 + x + 1 = 0\]
\[8 x^2 - 9x + 3 = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[- x^2 + x - 2 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 - \left( 2\sqrt{3} + 3i \right) x + 6\sqrt{3}i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 3\sqrt{2} + 2i \right) x + 6\sqrt{2i} = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 2 + i \right) x - \left( 1 - 7i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[2 x^2 + \sqrt{15}ix - i = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[2 x^2 - \left( 3 + 7i \right) x + \left( 9i - 3 \right) = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
If α, β are roots of the equation \[4 x^2 + 3x + 7 = 0, \text { then } 1/\alpha + 1/\beta\] is equal to
The values of x satisfying log3 \[( x^2 + 4x + 12) = 2\] are
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are
The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is