Advertisements
Advertisements
Question
If a and b are roots of the equation \[x^2 - x + 1 = 0\], then write the value of a2 + b2.
Solution
Given:
\[x^2 - x + 1 = 0\]
Also,
\[a \text { and } b\] are the roots of the equation.
Then, sum of the roots = \[a + b = - \left( \frac{- 1}{1} \right) = 1\]
Product of the roots = \[ab = \frac{1}{1} = 1\]
\[\therefore \left( a + b \right)^2 = a^2 + b^2 + 2ab\]
\[ \Rightarrow 1^2 = a^2 + b^2 + 2 \times 1\]
\[ \Rightarrow a^2 + b^2 = 1 - 2 = - 1\]
\[ \Rightarrow a^2 + b^2 = - 1\]
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 + 3x + 9 = 0
Solve the equation x2 – x + 2 = 0
Solve the equation `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`
Solve the equation `3x^2 - 4x + 20/3 = 0`
\[x^2 - x + 1 = 0\]
\[17 x^2 + 28x + 12 = 0\]
\[13 x^2 + 7x + 1 = 0\]
\[\sqrt{2} x^2 + x + \sqrt{2} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[- x^2 + x - 2 = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + \left( 1 - 2i \right) x - 2i = 0\]
Solve the following quadratic equation:
\[\left( 2 + i \right) x^2 - \left( 5 - i \right) x + 2 \left( 1 - i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - 4 x - 4i = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
If roots α, β of the equation \[x^2 - px + 16 = 0\] satisfy the relation α2 + β2 = 9, then write the value P.
Write roots of the equation \[(a - b) x^2 + (b - c)x + (c - a) = 0\] .
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
If α, β are roots of the equation \[x^2 + lx + m = 0\] , write an equation whose roots are \[- \frac{1}{\alpha}\text { and } - \frac{1}{\beta}\].
If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).
If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]
If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]
If x is real and \[k = \frac{x^2 - x + 1}{x^2 + x + 1}\], then
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
If α and β are the roots of \[4 x^2 + 3x + 7 = 0\], then the value of \[\frac{1}{\alpha} + \frac{1}{\beta}\] is
If α, β are the roots of the equation \[x^2 + px + q = 0 \text { then } - \frac{1}{\alpha} + \frac{1}{\beta}\] are the roots of the equation
If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]
The least value of k which makes the roots of the equation \[x^2 + 5x + k = 0\] imaginary is
The equation of the smallest degree with real coefficients having 1 + i as one of the roots is
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.