Advertisements
Advertisements
Question
\[- x^2 + x - 2 = 0\]
Solution
\[- x^2 + x - 2 = 0\]
\[ \Rightarrow x^2 - x + 2 = 0\]
\[ \Rightarrow x^2 - x + \frac{1}{4} + \frac{7}{4} = 0\]
\[ \Rightarrow x^2 - 2 \times x \times \frac{1}{2} + \left( \frac{1}{2} \right)^2 - \frac{7}{4} i^2 = 0\]
\[ \Rightarrow \left( x - \frac{1}{2} \right)^2 - \left( \frac{i\sqrt{7}}{2} \right)^2 = 0\]
\[ \Rightarrow \left( x - \frac{1}{2} + \frac{i\sqrt{7}}{2} \right) \left( x - \frac{1}{2} - \frac{i\sqrt{7}}{2} \right) = 0\]
\[\Rightarrow \left( x - \frac{1}{2} + \frac{\sqrt{7}}{2}i \right) = 0\] or, \[\left( x - \frac{1}{2} - \frac{\sqrt{7}}{2}i \right) = 0\]
\[\Rightarrow x = \frac{1}{2} - \frac{\sqrt{7}}{2}i\] or, \[x = \frac{1}{2} + \frac{\sqrt{7}}{2}i\]
Hence, the roots of the equation are
APPEARS IN
RELATED QUESTIONS
Solve the equation x2 – x + 2 = 0
Solve the equation `x^2 -2x + 3/2 = 0`
Solve the equation 27x2 – 10x + 1 = 0
If z1 = 2 – i, z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`
x2 + 1 = 0
9x2 + 4 = 0
x2 + 2x + 5 = 0
x2 + x + 1 = 0
\[x^2 + 2x + 5 = 0\]
\[17 x^2 - 8x + 1 = 0\]
\[27 x^2 - 10 + 1 = 0\]
\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]
\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]
\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]
\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]
\[3 x^2 - 4x + \frac{20}{3} = 0\]
Solving the following quadratic equation by factorization method:
\[x^2 + 10ix - 21 = 0\]
Solve the following quadratic equation:
\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]
Solve the following quadratic equation:
\[x^2 + 4ix - 4 = 0\]
Solve the following quadratic equation:
\[x^2 - x + \left( 1 + i \right) = 0\]
Solve the following quadratic equation:
\[i x^2 - x + 12i = 0\]
Solve the following quadratic equation:
\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]
Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].
If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.
If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.
Write the number of quadratic equations, with real roots, which do not change by squaring their roots.
The complete set of values of k, for which the quadratic equation \[x^2 - kx + k + 2 = 0\] has equal roots, consists of
If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]
The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is
The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is
The value of a such that \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is
The value of p and q (p ≠ 0, q ≠ 0) for which p, q are the roots of the equation \[x^2 + px + q = 0\] are
The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is
If the difference of the roots of \[x^2 - px + q = 0\] is unity, then
If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.