English

− X 2 + X − 2 = 0 - Mathematics

Advertisements
Advertisements

Question

\[- x^2 + x - 2 = 0\]

Solution

\[- x^2 + x - 2 = 0\]

\[ \Rightarrow x^2 - x + 2 = 0\]

\[ \Rightarrow x^2 - x + \frac{1}{4} + \frac{7}{4} = 0\]

\[ \Rightarrow x^2 - 2 \times x \times \frac{1}{2} + \left( \frac{1}{2} \right)^2 - \frac{7}{4} i^2 = 0\]

\[ \Rightarrow \left( x - \frac{1}{2} \right)^2 - \left( \frac{i\sqrt{7}}{2} \right)^2 = 0\]

\[ \Rightarrow \left( x - \frac{1}{2} + \frac{i\sqrt{7}}{2} \right) \left( x - \frac{1}{2} - \frac{i\sqrt{7}}{2} \right) = 0\]

\[\Rightarrow \left( x - \frac{1}{2} + \frac{\sqrt{7}}{2}i \right) = 0\]  or, \[\left( x - \frac{1}{2} - \frac{\sqrt{7}}{2}i \right) = 0\]

\[\Rightarrow x = \frac{1}{2} - \frac{\sqrt{7}}{2}i\] or, \[x = \frac{1}{2} + \frac{\sqrt{7}}{2}i\]

Hence, the roots of the equation are 

\[\frac{1}{2} \pm \frac{\sqrt{7}}{2}i\].
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Quadratic Equations - Exercise 14.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 14 Quadratic Equations
Exercise 14.1 | Q 25 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the equation x2 – x + 2 = 0


Solve the equation   `x^2 -2x + 3/2 = 0`  


Solve the equation 27x2 – 10x + 1 = 0


If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`


x2 + 1 = 0


9x2 + 4 = 0


x2 + 2x + 5 = 0


x2 + x + 1 = 0


\[x^2 + 2x + 5 = 0\]


\[17 x^2 - 8x + 1 = 0\]


\[27 x^2 - 10 + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[x^2 + x + \frac{1}{\sqrt{2}} = 0\]


\[x^2 + \frac{x}{\sqrt{2}} + 1 = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solving the following quadratic equation by factorization method:

\[x^2 + 10ix - 21 = 0\]


Solve the following quadratic equation:

\[x^2 - \left( 5 - i \right) x + \left( 18 + i \right) = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Solve the following quadratic equation:

\[x^2 - \left( \sqrt{2} + i \right) x + \sqrt{2}i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If \[2 + \sqrt{3}\] is root of the equation \[x^2 + px + q = 0\] than write the values of p and q.


If the difference between the roots of the equation \[x^2 + ax + 8 = 0\] is 2, write the values of a.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


The complete set of values of k, for which the quadratic equation  \[x^2 - kx + k + 2 = 0\] has equal roots, consists of


If a, b are the roots of the equation \[x^2 + x + 1 = 0, \text { then } a^2 + b^2 =\]


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The set of all values of m for which both the roots of the equation \[x^2 - (m + 1)x + m + 4 = 0\] are real and negative, is


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If 1 – i, is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then find the values of a and b.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×