मराठी

Solve the Following Quadratic Equation: X 2 − ( 3 √ 2 − 2 I ) X − √ 2 I = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following quadratic equation:

\[x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2} i = 0\]

बेरीज

उत्तर

\[ x^2 - \left( 3\sqrt{2} - 2i \right) x - \sqrt{2}i = 0\]

\[\text { Comparing the given equation with the general form } a x^2 + bx + c = 0,\text {  we get }\]

\[a = 1, b = - \left( 3\sqrt{2} - 2i \right) \text { and } c = - \sqrt{2}i\]

\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]

⇒ x = `(-(-3sqrt2-2i)±sqrt((-(3sqrt2-2i))^2)-4(1)(-sqrt2i))/2(1)`

\[ \Rightarrow x = \frac{\left (- 3\sqrt{2} - 2i) \right) \pm \sqrt{\left( 3\sqrt{2} - 2i \right)^2 - 4\sqrt{2}i}}{2}\]

\[ \Rightarrow x = \frac{\left( 3\sqrt{2} - 2i \right) \pm \sqrt{14 - 8\sqrt{2}i}}{2} . . . \left( i \right)\]

\[\text { Let } x + iy = \sqrt{14 - 8\sqrt{2}i} . \text { Then }, \]

\[ \Rightarrow \left( x + iy \right)^2 = 14 - 8\sqrt{2}i\]

\[ \Rightarrow x^2 - y^2 + 2ixy = 14 - 8\sqrt{2}i \]

\[ \Rightarrow x^2 - y^2 = 14 \text { and } 2xy = - 8\sqrt{2} . . . \left( ii \right)\]

\[\text { Now }, \left( x^2 + y^2 \right)^2 = \left( x^2 - y^2 \right)^2 + 4 x^2 y^2 \]

\[ \Rightarrow \left( x^2 + y^2 \right)^2 = 196 + 128 = 324\]

\[ \Rightarrow x^2 + y^2 = 18 . . . \left( iii \right) \]

\[\text { From } \left( ii \right) \text { and } \left( iii \right)\]

\[ \Rightarrow x = \pm 4 \text{ and }y = \pm \sqrt{2}\]

\[\text { As, xy is negative } \left[ \text { From } \left( ii \right) \right]\]

\[ \Rightarrow x = - 4, y = \sqrt{2}\text{  or }, x = 4, y = - \sqrt{2}\]

\[ \Rightarrow x + iy = 4 - \sqrt{2} i \text { or, } - 4 + \sqrt{2} i\]

\[ \Rightarrow \sqrt{14 - 8\sqrt{2}i} = \pm \left( 4 - \sqrt{2} i \right)\]

\[\text { Substituting these values in } \left( i \right), \text { we get }\]

\[ \Rightarrow x = \frac{\left( 3\sqrt{2} - 2i \right) \pm \left( 4 - \sqrt{2} i \right)}{2}\]

\[ \Rightarrow x = \frac{\left( 3\sqrt{2} + 4 \right) - i\left( 2 + \sqrt{2} \right)}{2}, \frac{\left( 3\sqrt{2} - 4 \right) - i\left( 2 - \sqrt{2} \right)}{2}\]

\[\text { So, the roots of the given quadratic equation are } \frac{\left( 3\sqrt{2} + 4 \right) - i\left( 2 + \sqrt{2} \right)}{2} \text{ and } \frac{\left( 3\sqrt{2} - 4 \right) - i\left( 2 - \sqrt{2} \right)}{2} .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Quadratic Equations - Exercise 14.2 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 14 Quadratic Equations
Exercise 14.2 | Q 2.1 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the equation x2 + 3 = 0


Solve the equation x2 + 3x + 9 = 0


Solve the equation x2 + 3x + 5 = 0


Solve the equation x2 – x + 2 = 0


Solve the equation  `x^2 + x/sqrt2 + 1 = 0`


Solve the equation   `x^2 -2x + 3/2 = 0`  


9x2 + 4 = 0


x2 + 2x + 5 = 0


\[x^2 - x + 1 = 0\]


\[\sqrt{3} x^2 - \sqrt{2}x + 3\sqrt{3} = 0\]


\[\sqrt{5} x^2 + x + \sqrt{5} = 0\]


\[- x^2 + x - 2 = 0\]


\[x^2 - 2x + \frac{3}{2} = 0\]


\[3 x^2 - 4x + \frac{20}{3} = 0\]


Solve the following quadratic equation:

\[x^2 + 4ix - 4 = 0\]


Solve the following quadratic equation:

\[x^2 - x + \left( 1 + i \right) = 0\]


Solve the following quadratic equation:

\[i x^2 - x + 12i = 0\]


Write the number of real roots of the equation \[(x - 1 )^2 + (x - 2 )^2 + (x - 3 )^2 = 0\].


If a and b are roots of the equation \[x^2 - px + q = 0\], than write the value of \[\frac{1}{a} + \frac{1}{b}\].


If a and b are roots of the equation \[x^2 - x + 1 = 0\],  then write the value of a2 + b2.


Write the number of quadratic equations, with real roots, which do not change by squaring their roots.


If α, β are roots of the equation \[x^2 - a(x + 1) - c = 0\] then write the value of (1 + α) (1 + β).


The number of real roots of the equation \[( x^2 + 2x )^2 - (x + 1 )^2 - 55 = 0\] is 


If α, β are the roots of the equation \[a x^2 + bx + c = 0, \text { then } \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =\]


If α, β are the roots of the equation \[x^2 + px + 1 = 0; \gamma, \delta\] the roots of the equation \[x^2 + qx + 1 = 0, \text { then } (\alpha - \gamma)(\alpha + \delta)(\beta - \gamma)(\beta + \delta) =\]


The number of real solutions of \[\left| 2x - x^2 - 3 \right| = 1\] is


The value of a such that  \[x^2 - 11x + a = 0 \text { and } x^2 - 14x + 2a = 0\] may have a common root is


The values of k for which the quadratic equation \[k x^2 + 1 = kx + 3x - 11 x^2\] has real and equal roots are


The value of p and q (p ≠ 0, q ≠ 0) for which pq are the roots of the equation \[x^2 + px + q = 0\] are

 

The number of roots of the equation \[\frac{(x + 2)(x - 5)}{(x - 3)(x + 6)} = \frac{x - 2}{x + 4}\] is 


If the difference of the roots of \[x^2 - px + q = 0\]  is unity, then

 

If α, β are the roots of the equation \[x^2 - p(x + 1) - c = 0, \text { then } (\alpha + 1)(\beta + 1) =\]


Find the value of P such that the difference of the roots of the equation x2 – Px + 8 = 0 is 2.


Find the value of a such that the sum of the squares of the roots of the equation x2 – (a – 2)x – (a + 1) = 0 is least.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×